

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 4003–4005

Rhodium-catalyzed allyl transfer from homoallyl alcohols to acrylate esters via retro-allylation

Minsul Jang, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu* and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

> Received 22 March 2007; revised 3 April 2007; accepted 6 April 2007 Available online 14 April 2007

Abstract—Retro-allylation of homoallyl alcohols by rhodium catalysts occurs to generate allylrhodium species. Insertion of acrylate esters to the allylrhodiums proceeds to give the corresponding 2,5-hexadienoate esters in situ. Subsequent isomerization or iterative 1,4-addition takes place in the same pots to furnish the corresponding 2,4-hexadienoate esters or triesters in good yields. $© 2007 Elsevier Ltd. All rights reserved.$

Metal-mediated retro-allylation of homoallyl alcohols is an interesting method for the generation of allylmetals, which proceeds through a carbon–carbon bond cleavage process. Our group^{[1](#page-2-0)} and others^{[2](#page-2-0)} reported allyl transfer from homoallyl alcohols to aldehydes, ketones, organic halides, and alkynes via retro-allylation. However, allyl transfer to alkenes has not been explored. Recently, we have found that the retro-allylation system could be applicable to rhodium catalysis and have achieved catalytic allyl transfer from homoallyl alcohols to aldehydes.[3](#page-2-0) Herein, we wish to describe rhodium-catalyzed allyl transfer from homoallyl alcohols to activated alkenes, acrylate esters.

Treatment of diisopropyl-substituted homoallyl alcohol $1a'$ (0.5 mmol) with butyl acrylate ($2a$, 2.0 mmol) in the presence of 2.5 mol % of $[RhCl(cod)]_2$, 10 mol % of $P(^{c}C_{5}H_{9})_{3}$, and 15 mol % of cesium carbonate in refluxing toluene (5.0 mL) for 10 h provided butyl (E) -5-methyl-2,4-hexadienoate (3aa) in 18% yield ([Table 1,](#page-1-0) entry 1). Apparently, methallyl transfer from $1a'$ to $2a$ occurred albeit the yield was low. The reaction would proceed via formation of σ -methallylrhodium, which would be in equilibrium with π -methallylrhodium, by retro-methallylation. With the interesting preliminary result, optimization studies were performed. Diphenyl

0040-4039/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.04.039

substitution at the oxygenated carbon of homoallyl alcohol improved the yield to 29% (entry 2). Given that $1a$ is the more acidic alcohol than $1a'$, the final protonolysis would be crucial to complete the catalytic cycle (vide infra). According to the assumption, we screened a variety of Brønsted acids as a mediator in the protonolysis step. Although benzoic acid suppressed the reaction completely (entry 3), phenol increased the yield to 37% (entry 4). The electron-withdrawing group on the aromatic ring gave no effect on yield (entry 5). Interestingly, sterically demanding 2-tert-butylphenol led to the formation of 3aa in 48% yield (entry 6). Finally, with 5 mol % of [RhCl(cod)]₂, 20 mol % of P(${}^{\circ}C_5H_9$)₃, 30 mol % of cesium carbonate, and 20 mol % of 2-tertbutylphenol, the desired product 3aa was obtained in 70% yield (entry 7).

By using the optimized conditions, we conducted the allyl transfer from homoallyl alcohols 1a–d bearing substituents at the β -position of the allyl moiety to acrylate esters 2 [\(Table 2](#page-1-0)). Although the reaction of 1a with bulky ester 2b gave a trace amount of the desired product (entry 2), the allyl transfer to acrylamide 2c proceeded to produce 5,N,N-trimethyl-2,4-hexadienamide (3ac) in moderate yield (entry 3). The phenyl-substituted allyl moiety of homoallyl alcohol 1b could also be transferred to 2a to give the corresponding hexadienoate 3ba in good yield with modest (E) selectivity (entry 4). Methyl acrylate (2d) as well as butyl acrylate (2a) participated in the reaction (entry 5). Electron-rich and electron-deficient substitutions on the benzene ring had moderate influence on yield and stereoselectivity (entries 6–9).

Keywords: Allyl transfer; Allylrhodium; Carbon–carbon bond cleavage; Retro-allylation.

^{*} Corresponding authors. Tel.: +81 75 383 2441; fax: +81 75 383 2438 (H.Y.); e-mail addresses: yori@orgrxn.mbox.media.kyoto-u.ac.jp; oshima@orgrxn.mbox.media.kyoto-u.ac.jp

Table 1. Optimization for methallyl transfer from 1a to 2a via retromethallylation

 a^a Determined by ${}^{1}H$ NMR.

 b Diisopropyl-substituted homoallyl alcohol 1a' was used instead of 1a.</sup> OH

^c With 5 mol % of [RhCl(cod)]₂, 20 mol % of P(^cC₅H₉)₃, 30 mol % of cesium carbonate, and 20 mol % of 2-tert-butylphenol.

Table 2. Rhodium-catalyzed allyl transfer from homoallyl alcohols 1 to acrylate esters 2

NО Phi Ph		$[RhCl(cod)]_2$ (5 mol %) $P(^{c}C_{5}H_{9})_{3}$ (20 mol %) Cs_2CO_3 (30 mol %) 2-tert-butylphenol (20 mol %)			
		toluene, reflux, 10 h			
Entry	1	R	2	X	3. Yield ^a $(\%), E.Z$
1	1a	Me	2a	O ⁿ Bu	3aa , 70 (55) , —
2	1a	Me	2 _b	O ^t Bu	3ab, Trace
3	1a	Me	2c	NMe ₂	$3ac, (33), -$
4	1b	Ph	2a	O ⁿ Bu	3ba , 63 (50) , $78:22$
5	1b	Ph	2d	OMe	3bd , (70) , $B = 81:19$
6	1c	$4-MeC6H4$	2a	O ⁿ Bu	3ca, $64(54)$, $86:14$
7	1c	$4-MeC6H4$	2d	OMe	3cd, 65 (58), 80:20
8	1d	3 -CF ₃ C ₆ H ₄	2a	O ⁿ Bu	3da , 74 (42), 85:15
9	1d	3 -CF ₃ C ₆ H ₄	2d	OMe	3dd, 52 (47), 79:21

^a Determined by ¹H NMR. Isolated yields are in parentheses. The E/Z ratios were tentatively assigned by comparing the ¹H NMR spectra

of (*E*)- with (*Z*)-**3bd**.
^b 1,4-Adduct, methyl 5-phenyl-5-hexenoate was obtained in 2% yield.

Next, we tested allyl transfer reactions of homoallyl alcohols 4 having an aryl group at the allylic position to acrylate esters 2a and 2d (Table 3). Homoallyl alcohol 4a' was subjected to the standard conditions to furnish the unexpected triester $5aa^4$ $5aa^4$ in 35% (entry 1). In this case, dimethyl-substituted homoallyl alcohol 4a gave better results (entries 2 and 3). The transfers of 4-methylphenyl- and 4-methoxyphenyl-substituted allyl moieties were also performed (entries 4–7). A naphthalene Table 3. Rhodium-catalyzed allyl transfer from homoallyl alcohols 4 to acrylate esters 2

^a For the reaction with 2a, 4.0 equiv of 2a was used while for 2d,

12.0 equiv of 2d was used.
^b Determined by ¹H NMR. Isolated yields are in parentheses.

 \rm^c Diphenyl-substituted homoallyl alcohol 4a \rm^{\prime} was used.

ring in 4d decreased the yield slightly probably due to the steric factors (entries 8 and 9).

We are tempted to assume the following reaction mechanism [\(Scheme 1\)](#page-2-0). Initial ligand exchange between a rhodium species 6 and homoallyl alcohol 7 or 2-tertbutylphenol (8) with the aid of cesium carbonate provides 9 or 10. Alkoxides 9 and 10 would be in equilibrium. Retro-allylation of 9^5 9^5 then occurs to generate σ -allylrhodium, the isomerization of which to π -allylrhodium would be reversible. Subsequent insertion of $2⁶$ $2⁶$ $2⁶$ followed by β -H elimination provides 11 along with a rhodium hydride species 12. In the case of homoallyl alcohol 7 ($\mathbb{R}^2 = H$), isomerization of 11 proceeds in the same pots to produce conjugated 2,4-hexadienoate 3. In contrast, with the use of homoallyl alcohol 7 $(R^{2} = Ar, R^{3} = H)$, the corresponding 6-aryl-2,5hexadienoate 11 undergoes iterative 1,4-addition to an excess of 2 to afford triester 5. [7](#page-2-0) Rhodium hydride 12 generated in situ reacts with 2 to give $oxa-\pi$ -allylrhodium 13. Subsequent protonolysis with 8 regenerates 10 to complete the catalytic cycle. Although the exact role of 2-tert-butylphenol (8) is not clear yet, it could work as a mediator converting $oxa-\pi$ -allylrhodium 13 to 9. Namely, the protonolysis of 13 with 8 would be much faster than that with 7. [8](#page-2-0)

In summary, we have extended the scope of the rhodium-catalyzed allyl transfer reaction. The allylrhodium was found to undergo addition to activated olefin.^{[9](#page-2-0)}

Further development of the retro-allylation system in other transformations catalyzed by transition metals is currently underway.

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research and COE Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. K.H. acknowledges JSPS for financial support.

Supplementary data

Supplementary data (experimental details and characterization data for new compounds) associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2007.04.039](http://dx.doi.org/10.1016/j.tetlet.2007.04.039).

References and notes

1. (a) Fujita, K.; Yorimitsu, H.; Oshima, K. Chem. Rec. 2004, 4, 110–119; (b) Fujita, K.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2004, 69, 3302–3307; (c) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2005, 7, 3577-3579; (d) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2006, 128, 2210–2211; (e) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. J. Organomet. Chem. 2007, 692, 505–513.

- 2. Retro-allylations from lithium, magnesium, and zinc alkoxides were observed. (a) Benkeser, R. A.; Siklosi, M. P.; Mozdzen, E. C. J. Am. Chem. Soc. 1978, 100, 2134–2139; (b) Gerard, F.; Miginiac, P. Bull. Chim. Soc. Fr. 1974, 2527–2533; (c) Jones, P.; Knochel, P. J. Org. Chem. 1999, 64, 186–195; Under harsh conditions, retro-allylation took place by the action of tin: (d) Peruzzo, V.; Tagliavini, G. J. Organomet. Chem. 1978, 162, 37–44; (e) Giesen, V. Dissertation University Marburg, 1989; Dibutyltin oxide-catalyzed allyl transfer: (f) Yanagisawa, A.; Aoki, T.; Arai, T. Synlett 2006, 2071–2074; Ruthenium-catalyzed deallylation was reported: (g) Kondo, T.; Kodoi, K.; Nishinaga, E.; Okada, T.; Morisaki, Y.; Watanabe, Y.; Mitsudo, T. J. Am. Chem. Soc. 1998, 120, 5587–5588.
- 3. Takada, Y.; Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2006, 8, 2515–2517.
- 4. See Supplementary data for the structural assignment of 5.
- 5. Retro-allylation of homoallyloxyrhodium complexes to generate π -allylrhodium species was reported. (a) Zhao, P.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9642–9643; Instead of the retro-allylation via sixmembered transition state, β -allyl elimination via a fourmembered transition state might operate. Rh-catalyzed balkynyl elimination with tertiary propargyl alcohols was reported: (b) Funayama, A.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2005, 127, 15354–15355; In Rh-catalyzed reactions of cyclobutanones with arylboronic acids, ring opening of cyclobutanols via β -carbon elimination took place. (c) Matsuda, T.; Makino, M.; Murakami, M. Org. Lett. 2004, 6, 1257-1259; Direct observation of β -aryl elimination from iminyl- and alkoxyrhodium complexes: (d) Zhao, P.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 11618–11619; (e) Zhao, P.; Christopher, D. I.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 3124–3125.
- 6. Catalytic processes involving intermolecular insertion of olefins to allylmetals are quite rare. (a) Mitsudo, T.; Zhang, S.-W.; Kondo, T.; Watanabe, Y. Tetrahedron Lett. 1992, 33, 341–344; (b) Nakamura, H.; Shim, J.-G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113–8114; (c) Tsukada, N.; Sato, T.; Inoue, Y. Chem. Commun. 2001, 237–238; (d) Tsukada, N.; Sato, T.; Inoue, Y. Chem. Commun. 2003, 2404–2405.
- 7. The isomerization and iterative 1,4-addition would be caused by the action of cesium carbonate. The use of potassium carbonate instead of cesium carbonate gave mixtures of 11 and 3 and of 11 and 5, respectively.
- 8. The proton exchange of $oxa-\pi$ -allylrhodium with phenols: Moss, R. J.; Wadsworth, K. J.; Chapman, C. J.; Frost, C. G. Chem. Commun. 2004, 1984–1985.
- 9. Allylation of aldehydes and ketones with allylrhodium was reported. (a) Shi, M.; Lei, G.-X.; Masaki, Y. Tetrahedron: Asymmetry 1999, 10, 2071–2074; (b) Masuyama, Y.; Kaneko, Y.; Kurusu, Y. Tetrahedron Lett. 2004, 45, 8969–8971. Also see: Ref. 3.