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Rhodium-catalyzed allyl transfer from homoallyl alcohols
to acrylate esters via retro-allylation
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Abstract—Retro-allylation of homoallyl alcohols by rhodium catalysts occurs to generate allylrhodium species. Insertion of acrylate
esters to the allylrhodiums proceeds to give the corresponding 2,5-hexadienoate esters in situ. Subsequent isomerization or iterative
1,4-addition takes place in the same pots to furnish the corresponding 2,4-hexadienoate esters or triesters in good yields.
� 2007 Elsevier Ltd. All rights reserved.
Metal-mediated retro-allylation of homoallyl alcohols is
an interesting method for the generation of allylmetals,
which proceeds through a carbon–carbon bond cleavage
process. Our group1 and others2 reported allyl transfer
from homoallyl alcohols to aldehydes, ketones, organic
halides, and alkynes via retro-allylation. However, allyl
transfer to alkenes has not been explored. Recently, we
have found that the retro-allylation system could be
applicable to rhodium catalysis and have achieved
catalytic allyl transfer from homoallyl alcohols to
aldehydes.3 Herein, we wish to describe rhodium-cata-
lyzed allyl transfer from homoallyl alcohols to activated
alkenes, acrylate esters.

Treatment of diisopropyl-substituted homoallyl alcohol
1a 0 (0.5 mmol) with butyl acrylate (2a, 2.0 mmol) in the
presence of 2.5 mol % of [RhCl(cod)]2, 10 mol % of
P(cC5H9)3, and 15 mol % of cesium carbonate in
refluxing toluene (5.0 mL) for 10 h provided butyl (E)-
5-methyl-2,4-hexadienoate (3aa) in 18% yield (Table 1,
entry 1). Apparently, methallyl transfer from 1a 0 to 2a
occurred albeit the yield was low. The reaction would
proceed via formation of r-methallylrhodium, which
would be in equilibrium with p-methallylrhodium, by
retro-methallylation. With the interesting preliminary
result, optimization studies were performed. Diphenyl
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substitution at the oxygenated carbon of homoallyl
alcohol improved the yield to 29% (entry 2). Given that
1a is the more acidic alcohol than 1a 0, the final proton-
olysis would be crucial to complete the catalytic cycle
(vide infra). According to the assumption, we screened
a variety of Brønsted acids as a mediator in the proton-
olysis step. Although benzoic acid suppressed the reac-
tion completely (entry 3), phenol increased the yield to
37% (entry 4). The electron-withdrawing group on the
aromatic ring gave no effect on yield (entry 5). Interest-
ingly, sterically demanding 2-tert-butylphenol led to the
formation of 3aa in 48% yield (entry 6). Finally, with
5 mol % of [RhCl(cod)]2, 20 mol % of P(cC5H9)3,
30 mol % of cesium carbonate, and 20 mol % of 2-tert-
butylphenol, the desired product 3aa was obtained in
70% yield (entry 7).

By using the optimized conditions, we conducted the al-
lyl transfer from homoallyl alcohols 1a–d bearing sub-
stituents at the b-position of the allyl moiety to
acrylate esters 2 (Table 2). Although the reaction of 1a
with bulky ester 2b gave a trace amount of the desired
product (entry 2), the allyl transfer to acrylamide 2c pro-
ceeded to produce 5,N,N-trimethyl-2,4-hexadienamide
(3ac) in moderate yield (entry 3). The phenyl-substituted
allyl moiety of homoallyl alcohol 1b could also be trans-
ferred to 2a to give the corresponding hexadienoate 3ba
in good yield with modest (E) selectivity (entry 4).
Methyl acrylate (2d) as well as butyl acrylate (2a) partic-
ipated in the reaction (entry 5). Electron-rich and elec-
tron-deficient substitutions on the benzene ring had
moderate influence on yield and stereoselectivity (entries
6–9).
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Table 1. Optimization for methallyl transfer from 1a to 2a via retro-
methallylation

OH

Ph
Ph +

[RhCl(cod)]2 (2.5 mol %)
P(cC5H9)3 (10 mol %)
Cs2CO3 (15 mol %)
additive (10 mol %)

toluene, reflux, 10 h

LnRh LnRh

2a1a

3aa

O

OnBu

O

OnBu

2a

Entry Additive Yield of 3aaa (%)

1b None 18
2 None 29
3 Benzoic acid 0
4 Phenol 37
5 4-Trifluoromethylphenol 38
6 2-tert-Butylphenol 48
7c 2-tert-Butylphenol 70

a Determined by 1H NMR.
b Diisopropyl-substituted homoallyl alcohol 1a 0 was used instead of 1a.

OH

iPr
iPr

1a'
c With 5 mol % of [RhCl(cod)]2, 20 mol % of P(cC5H9)3, 30 mol % of

cesium carbonate, and 20 mol % of 2-tert-butylphenol.

Table 2. Rhodium-catalyzed allyl transfer from homoallyl alcohols 1

to acrylate esters 2

OH

Ph
Ph

+

[RhCl(cod)]2 (5 mol %)
P(cC5H9)3 (20 mol %)
Cs2CO3 (30 mol %)
2-tert-butylphenol (20 mol %)

toluene, reflux, 10 h

R

2

1

3

O

X

O

X

R

Entry 1 R 2 X 3, Yielda (%), E:Z

1 1a Me 2a OnBu 3aa, 70 (55), —
2 1a Me 2b OtBu 3ab, Trace
3 1a Me 2c NMe2 3ac, (33), —
4 1b Ph 2a OnBu 3ba, 63 (50), 78:22
5 1b Ph 2d OMe 3bd, (70),b 81:19
6 1c 4-MeC6H4 2a OnBu 3ca, 64 (54), 86:14
7 1c 4-MeC6H4 2d OMe 3cd, 65 (58), 80:20
8 1d 3-CF3C6H4 2a OnBu 3da, 74 (42), 85:15
9 1d 3-CF3C6H4 2d OMe 3dd, 52 (47), 79:21

a Determined by 1H NMR. Isolated yields are in parentheses. The E/Z
ratios were tentatively assigned by comparing the 1H NMR spectra
of (E)- with (Z)-3bd.

b 1,4-Adduct, methyl 5-phenyl-5-hexenoate was obtained in 2% yield.

Table 3. Rhodium-catalyzed allyl transfer from homoallyl alcohols 4

to acrylate esters 2

LnRh LnRh

Ar Ar

OH

Me
Me +

[RhCl(cod)]2 (5 mol %)
P(cC5H9)3 (20 mol %)
Cs2CO3 (30 mol %)
2-tert-butylphenol (20 mol %)

toluene, reflux, 10 h24

O

X
Ar

X = OnBu

= OMe

2a
2d O

OR'
Ar

R'O
O

OR'
O

2

5

Entry 4 Ar 2a 5, Yieldb (%)

1c 4a0 Ph 2a 5aa, 35
2 4a Ph 2a 5aa, (55)
3 4a Ph 2d 5ad, (67)
4 4b 4-MeC6H4 2a 5ba, 60 (58)
5 4b 4-MeC6H4 2d 5bd, 61 (55)
6 4c 4-MeOC6H4 2a 5ca, 61 (42)
7 4c 4-MeOC6H4 2d 5cd, (77)
8 4d 1-Naphthyl 2a 5da, 44
9 4d 1-Naphthyl 2d 5dd, 54

a For the reaction with 2a, 4.0 equiv of 2a was used while for 2d,
12.0 equiv of 2d was used.

b Determined by 1H NMR. Isolated yields are in parentheses.
c Diphenyl-substituted homoallyl alcohol 4a 0 was used.

OH

Ph
Ph

4a'Ph
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Next, we tested allyl transfer reactions of homoallyl
alcohols 4 having an aryl group at the allylic position
to acrylate esters 2a and 2d (Table 3). Homoallyl alcohol
4a 0 was subjected to the standard conditions to furnish
the unexpected triester 5aa4 in 35% (entry 1). In this
case, dimethyl-substituted homoallyl alcohol 4a gave
better results (entries 2 and 3). The transfers of 4-meth-
ylphenyl- and 4-methoxyphenyl-substituted allyl moie-
ties were also performed (entries 4–7). A naphthalene
ring in 4d decreased the yield slightly probably due to
the steric factors (entries 8 and 9).

We are tempted to assume the following reaction mech-
anism (Scheme 1). Initial ligand exchange between a
rhodium species 6 and homoallyl alcohol 7 or 2-tert-
butylphenol (8) with the aid of cesium carbonate
provides 9 or 10. Alkoxides 9 and 10 would be in
equilibrium. Retro-allylation of 95 then occurs to
generate r-allylrhodium, the isomerization of which to
p-allylrhodium would be reversible. Subsequent inser-
tion of 26 followed by b-H elimination provides 11 along
with a rhodium hydride species 12. In the case of homo-
allyl alcohol 7 (R2 = H), isomerization of 11 proceeds in
the same pots to produce conjugated 2,4-hexadienoate
3. In contrast, with the use of homoallyl alcohol 7
(R2 = Ar, R3 = H), the corresponding 6-aryl-2,5-
hexadienoate 11 undergoes iterative 1,4-addition to an
excess of 2 to afford triester 5.7 Rhodium hydride 12
generated in situ reacts with 2 to give oxa-p-allylrho-
dium 13. Subsequent protonolysis with 8 regenerates
10 to complete the catalytic cycle. Although the exact
role of 2-tert-butylphenol (8) is not clear yet, it could
work as a mediator converting oxa-p-allylrhodium 13
to 9. Namely, the protonolysis of 13 with 8 would be
much faster than that with 7.8

In summary, we have extended the scope of the rho-
dium-catalyzed allyl transfer reaction. The allylrhodium
was found to undergo addition to activated olefin.9
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Scheme 1.
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Further development of the retro-allylation system in
other transformations catalyzed by transition metals is
currently underway.
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